

Interaktionen in der Schmerztherapie

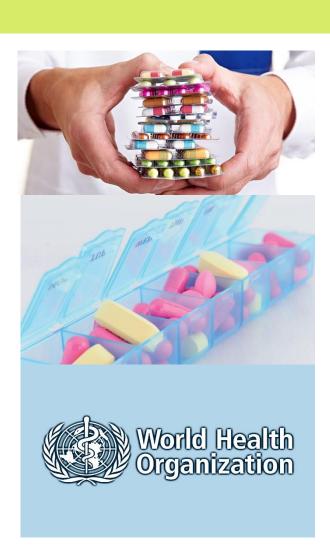
Norbert Grießinger Schmerzzentrum, Universitätsklinikum Erlangen

Definition Medikamentöse Mehrfachtherapie

Polypharmakotherapie

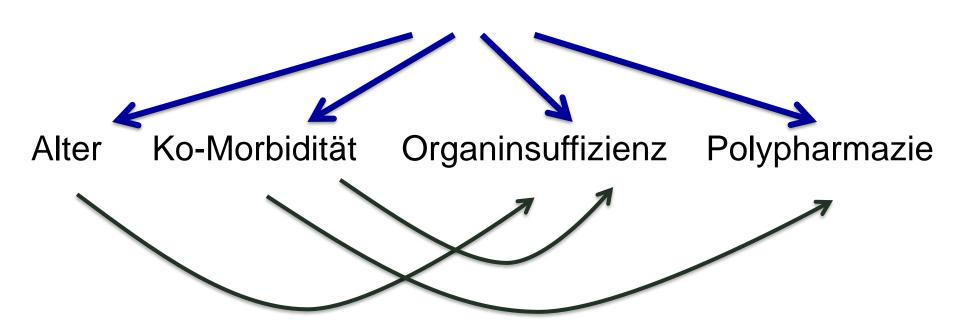
Polypragmasie

Polypharmazie


=

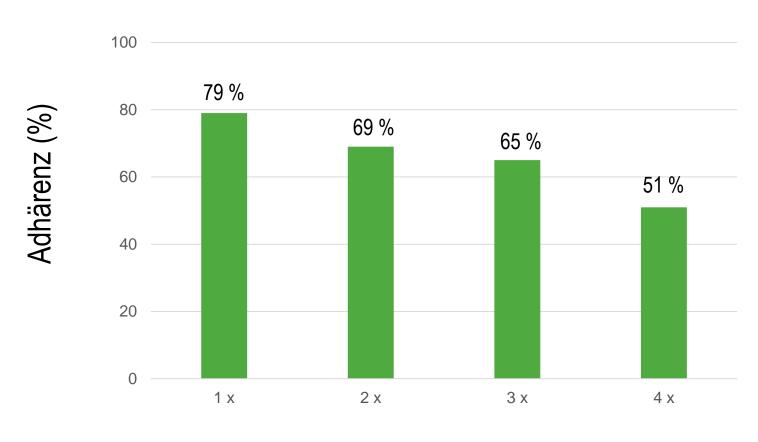
Medikamentöse Mehrfachtherapie

WHO-Definition: > 5 Arzneistoffe/Tag


Pat.> 76 J.: ca. 30-50 % der Pat.

erfüllen diese Definition

Compliance (Adhärenz), Interaktionen


Herausforderungen

Adhärenz

bezeichnet das Ausmaß, in dem das *Verhalten einer Person*, wie z.B. die Medikamenten-Einnahme, mit den mit dem Therapeuten *vereinbarten Empfehlungen übereinstimmt.*

Die Anzahl der Dosierungen korreliert umgekehrt mit der Adhärenz

Anzahl der Dosierungen

Polymedikation: Folgen der Leitlinientherapie beim älteren Patienten

Patientenbeispiel:

Cynthia Boyd et al.: JAMA 2005 Aug 10; 294(6):716-24

79 –jährige Frau, Diabetes, Bluthochdruck, Chronische Bronchitis, Osteoporose und Polyarthritis

Therapie nach Leitlinien der Fachgesellschaften:

Einnahme von:

- 12 Medikamenten in
- 19 Dosierungen zu
 - 5 verschiedenen Zeitpunkten

Arzneimittelinteraktionen

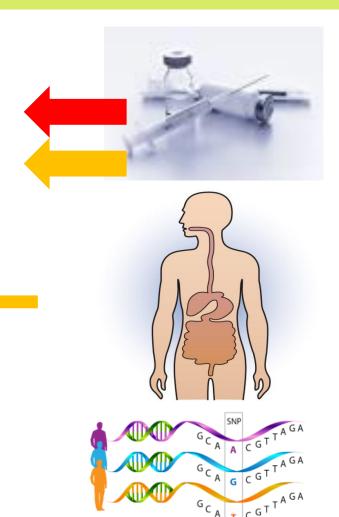
Formel für die Berechnung der Interaktionen:

$$(n^2-n)/2$$

Beispiel:

12 verschiedene Medikamente

(144 - 12)/2


_

66 Interaktionen!

Klassifikation der Interaktionen

- Pharmazeutische Interaktionen
- Pharmakodynamische Interaktionen
- Pharmakokinetische Interaktionen
 - Resorption
 - Verteilung (z.B. Proteinbindung)
 - Metabolismus (z.B. CYP450)
 - Elimination (z.B. Transporter wie p-Glykoprotein)
- Pharmakogenetische Interaktionen (SNP)

Pharmakodynamische Interaktionen Definitionen

- Pharmakodynamik: Wirkung von Arzneistoffen auf den Körper
- Pharmakodynamische Interaktionen:
 Wechselwirkungen bei denen sich Pharmaka in ihrer Wirkung unmittelbar beeinflussen,
 z.B. Verstärkung sedierender Medikamente (synergistisch)
- Häufig durchaus erwünscht:
 - Antiinfektiva (3-fach Kombination)
 - Schmerzmedikamente (z.B. Opioid plus Koanalgetikum)
- Bei einer Wirkabschwächung spricht man von antagonistisch

Pharmakodynamische Interaktionen Definitionen

- Pharmakodynamik: Wirkung von Arzneistoffen auf den Körner
- Fallbeispiel: Analgetika plus Wärmetherapie
- Patientin 78 Jahre, Rückenschmerzen lat., Verordnung eines Fentanylpflasters (25µg/h)
 - abends Heizkissen auf die schmerzende Stelle hier war auch das Pflaster!
 - 23 Uhr-Einlieferung ins Krankenhaus: Stark sediert, enge Pupillen, AF 6!!

Pharmakodynamische Interaktionen Opioid plus Benzodiazepin

Kein Ko-Verschreibung,

International Association for the Study of Pain mo ein Benzodiazeoin unter den 25 h Working together for pain relief

In USA sind 3 Opioid verschriebenen Medikamenten

■ Patienten, die Opioide und "Benzos" V haben ein 15 x höheres Todes istko als hormale Patienten Opioids and Benzodiazepines

Chronische Schmerzpatienten, die an einer Opioidüberdosierung

verstarben, erhielten zu Goden when combined with CNS depressant drugs."

ppioid maintenance therapy for opioid dependence in the VA health-care system, with an estimated 13% and 20% of

¹ Park TW, Saitz R, Ganoczy D, Ilgen MA, Bohnert AS. Benzodiazepine prescribing patterns and deaths from drug overdose among US veterans receiving opioid analgesics: case-cohort study. BMJ 2015;350.

²Gomes T, Mamdani MM, Dhalla IA, Paterson JM, Juurlink DN. Opioid dose and drug-related mortality in patients with nonmalignant pain. Arch Intern Med 2011;171:686-91.

Pharmakodynamische Interaktionen Patientin 46J: Zustand nach HALLUX-OP

Medikamentenanamnese

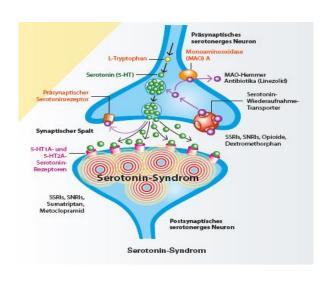
- > Sumatriptan 100 mg im Migräneanfall zusätzlich Ibuprofen 600mg; letzter Anfall vor zwei Tagen (Sumatriptan 1 x 100 mg, nach 6 Stunden 2. Dosis)
- > Sertralin 100 mg/d 1 -0-1, seit 2 Jahren
- > Erhält wegen sehr starker Schmerzen nach der Hallux-OP

Tramadol ret. Tbl. 100mg 4x/d, zusätzlich 100mg (40 Trpf.) bis 3x/d.

Wegen der starken Schmerzen hat sie 6x40 Trp. eingenommen.

Pharmakodynamische Interaktionen Patientin 46 J: Zustand nach HALLUX-OP

Medikamentenanamnese


> Sumatriptan 100 mg im Migräneanfall – zusätzlich Ibuprofen 600mg; letzter Anfall vor zwei Tagen (Sumatriptan 1 x 100 mg, nach 6 Stunden 2. Dosis

Nach zwei Tagen entwickelt die Patientin:

 Schweißausbrüche, Fieber, Schüttelfrost, Durchfall, Verwirrungszustände

Pharmakodynamische Interaktionen

■ Was könnte die Ursache sein?

Serotoninsyndrom

Serotoninsyndrom

Symptome (autonom vegetativ, zentralnervös, neuromuskulär)

- Schweißausbrüche
- Fieber
- Übelkeit, Durchfall
- Schüttelfrost, Zittern
- Blutdruckanstieg
- Verwirrung, Unruhe
- Halluzinationen

- EKG-Veränderungen
- Muskelzuckungen, Tremor, Myoklonie
- Nierenschädigung, Lebertoxizität

_ ----

Pharmakologische Mechanismen als mögliche Ursachen eines Serotoninsyndroms

Mechanismus

Steigerung der Serotoninsynthese

Medikamente

Tryptophan, 5-Hydroxytrypt.

Therapie:

- 1. Absetzen der verursachenden Medikamente
- 2. Benzodiazepine, Betablocker
- 3. Serotoninantagonisten und Chlorpromazin heben die Wirkung von Serotonin am Rezeptor auf
 - Litnium
 - CYP2D6-Inhibitoren
 - CYP3A4-Inhibitoren

Patienten mit Serotoninsyndrom : 27.5 % nahmen SSRI ein, 0.35% waren tödlich

Boyer et al. The serotonin syndrome. N. Engl. J. Med. 352; 11, 2005

Pharmakodynamische Interaktionen Fallbeispiel: Georg S., 76 Jahre

Medikamentenanamnese

- > Clopidogrel 75 mg/d
- > Pramipexol ret. 0,52 mg/d
- > Metamizol 500 mg bei Bedarf (2-3x/d)
- > Citalopram 20mg 1- 0 0

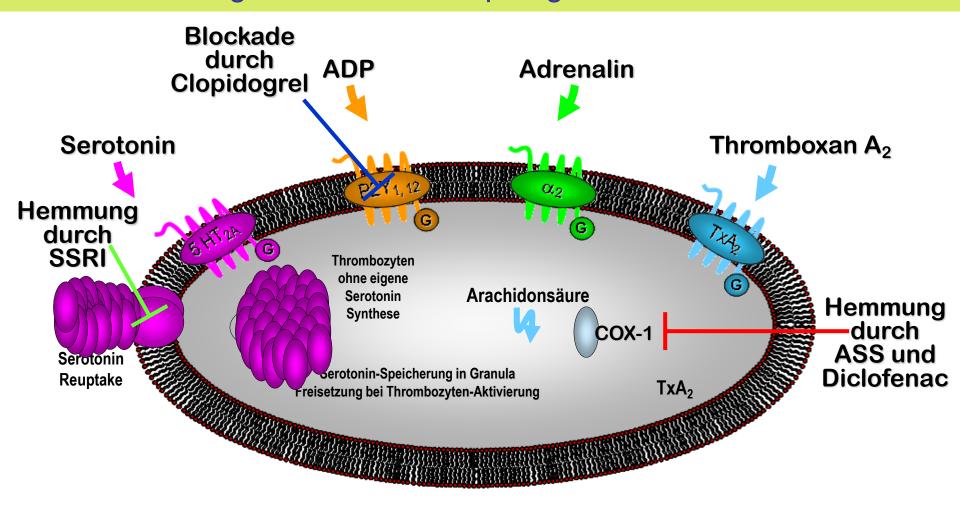
Aktuelle Situation

- > Sturz von der Leiter Fallhöhe ca. 2 m
- > Er kann nur unter stärksten lumbalen Rückenschmerzen aufstehen ist aber voll orientiert
- > Enkel bringt den Großvater zum Hausarzt

Georg S. beim Hausarzt

- > Schmerzwerte Rücken: NRS 6 /8
- Schmerzwerte Handgelenk und Ellenbogen: NRS 3/6
- > Hämatom paravertebral Bereich TH8 bis L2, weiter zunehmend

Der Hausarzt gab 75mg Diclofenac i.m. und danach 5mg Morphin i.v.


Was ist die größte Gefahr bei dieser Medikamenten – Kombination?

Clopidogrel
Pramipexol ret.
Metamizol
Citalopram
Diclofenac
Morphin

75 mg/d 0,52 mg/d 500 mg bei Bedarf (2-3 x/d) 20 mg 1-0-0 75 mg 5 mg

Blutungsgefahr

Thrombozyten-Funktion: Beeinflussung durch SSRI, Clopidogrel, COX1-Hemmer

Blutungsrisiko von Antidepressiva

Einteilung der SSRI nach Affinität zum Serotonin-Transporter (Auswahl)

niedrige Affinität

u.a. Doxepin, Maprotilin, Mirtazapin

Hazard Ratio 1,0 (Referenz)

mittlere Affinität

u.a Venlafaxin, Duloxetin, Imipramin, Amitriptylin

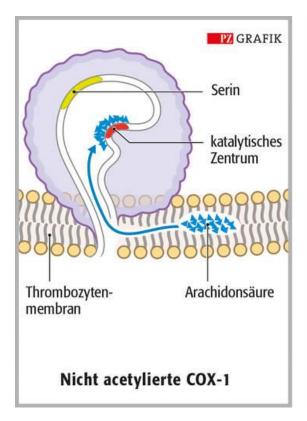
Hazard Ratio 1,1 (0,88-1,4)

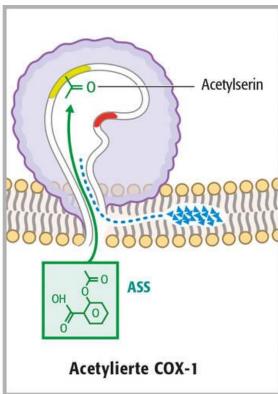
hohe Affinität

Paroxetin, Sertralin, Fluoxetin, Escitalopram, Citalopram

Hazard Ratio 1,38 (1,11-1,71) P < 0,01

Lee et al. (2012) Antidepressant use and the risk of upper gastrointestinal bleeding in psychiatric patients: a nationwide cohort study in Taiwan. J Clin Psychopharmacol. 32:518-24


Pharmakodynamische Interaktionen


TABELLE 1				
Beispiele typischer additiver und antagonistischer pharmakodynamischer Interaktionen				
Substanz I	Substanz II	Möglicher Effekt		
Additive Interaktionen				
NSAID	SSRI, Phenprocoumon	erhöhte Blutungsgefahr		
NSAID	Glukokortikoide	erhöhte Magenblutungs- gefahr		
ACE-Hemmer	Spironolacton, Amilorid	Hyperkaliämie		
SSRI	Triptane	Serotoninsyndrom		
Trizyklische Antidepressiva	Niederpotente Neuroleptika	Verstärkung anticholinerger Effekte		
Chinolone	Makrolide, Citalopram	QT-Zeitverlängerung, Torsade de pointes		
Antagonistische Interaktionen				
ASS	Ibuprofen	Wirkungsabschwächung		
ACE-Hemmer	NSAID	Wirkungsabschwächung		
Levodopa	klassische Neuroleptika	Wirkungsabschwächung		
Phenprocoumon	Vitamin K	Wirkungsabschwächung		

SSRI, Serotonin-Wiederaufnahmehemmer; NSAID, nichtsteroidale Antiphlogistika

Cascorbi, Ingolf

Pharmakodynamische Interaktionen Ibuprofen und ASS

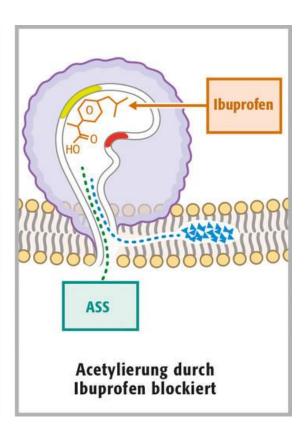


Abbildung 1: Thrombozytenaggregationshemmung durch ASS und Wechselwirkung mit Ibuprofen Foto: Stephan Spitzer

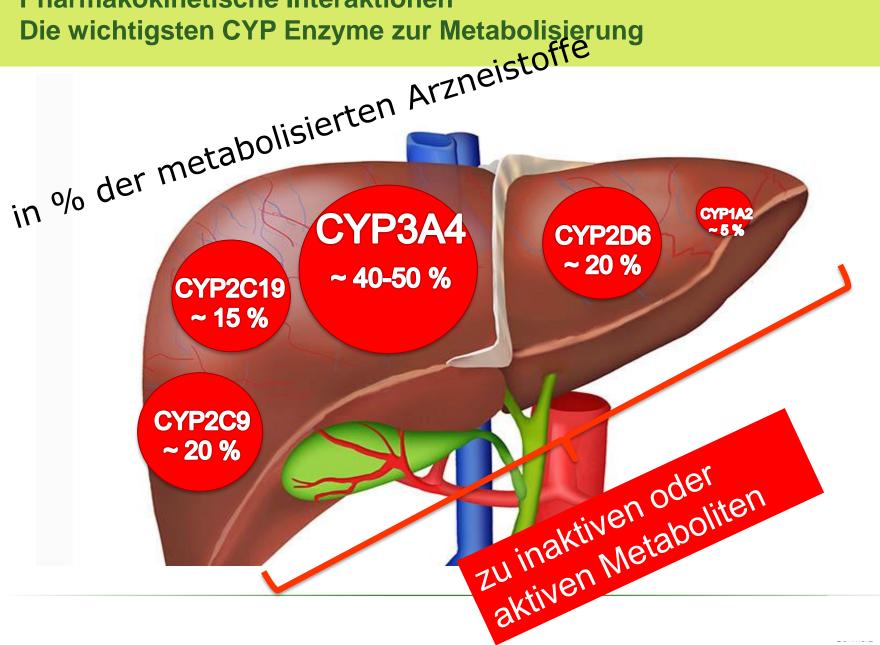
Pharmakodynamische Interaktionen Metamizol und ASS

Arzneimittelkommission der Deutschen Ärzteschaft: "UAW-News International"

Kann Metamizol die Wirkung von ASS auf die Thrombozytenaggregation behindern? – hinsichtlich klinischer Relevanz und Empfehlungen für die Praxis bleiben Fragen offen

.....Wenn ein Patient Metamizol und ASS 100 gleichzeitig anwendet, sollte ASS immer mindestens 30 Minuten vor Metamizol eingenommen werden. Es ist jedoch unklar, ob und wieweit ein solches Vorgehen potenzielle Interaktionen bei einer längerfristigen Einnahme verhindern kann.

Dtsch Arztebl 2018; 115(18): A-897 / B-759 / C-759


Pharmakodynamische Arzneimittelinteraktionen: Opioid-Analgetika

Analgetikum	Arzneimittel 2	Resultat	Empfehlung
Opioid	Benzodiazepin	Wirkverstärkung, insbes. Atem- depression	Cave
Opioid	Nicht-Opioid	Synergistisch, wenn indiziert	
Opioid (für Oxycodon beschrieben)	Pregabalin	Beeinträcht. der kogn. und grob- motor. Fkt. mgl.	Aufklärung
Opioid (WHO III)	Tilidin/Naloxon	Unsinnige Kombination	obsolet
Tramadol	SSRI	Serotoninsyndrom	anderes Analgetikum
Methadon	Amiodaron, Procainamid, Terfenadin	QT-Zeit- Verlängerung	Keine Kombination

Einflussfaktoren auf die Pharmakokinetik

Einflussfaktoren	Beispiele
Genetik	Polymorphismen, CYP450
Alter	Renale Elimination
Geschlecht	Hormonale Einflüsse
Gewicht	Verteilung/Fett
Allgemeinzustand	Temperatur, Proteine
Physiologische Zustände	Zirkadiane Rhythmen
Leberfunktion	Metabolismus
Dosierung	Kumulation
Administration	Oral, parenteral
Diät, Komedikation	Antazida

Pharmakokinetische Interaktionen

Wichtige <u>Substrate</u> von CYP- Enzymen (<u>Auswahl</u>) Diese Isoenzyme metabolisieren folgende Arzneimittel

1A2	2C9	2C19	2D6	3A4,5,7
• Amitriptylin	•Diclofenac	Omeprazol u.a.	Tamoxifen!	•Alfentanil
Naproxen	•Ibuprofen	PPIs	•Codein	•Fentanyl
Duloxetin	•Lornoxicam	Amitriptylin	•Duloxetin	•Methadon
Clozapin	•Meloxicam	Citalopram	 Venlafaxin 	Sildenafil
Estradiol	•Piroxicam	•Imipramin	Oxycodon	Sunitinib
Haloperidol	Naproxen	Indomethacin	•Tramadol	Tamoxifen
Olanzapin	Celecoxib	Clopidogrel	•Dextromethorph.	Estradiol
Propranolol	Amitriptylin	Cyclophosph.	•Amitriptylin	Progesteron
Theophyllin	Glibenclamid	Nelfinavir	•Desipramin	Testosteron
Verapamil	Phenprocoumon	Propranolol	•Imipramin	Simvastatin
•Zolmitriptan	Fluoxetin	Diazepam	Fluoxetin	Atorvastatin
 Paracetamol 	Tamoxifen	Progesteron	Paroxetin	Clarithromycin
	mittalisiidus man 40 Auf			Erythromycin

nach: Mutschler Arzneimittelwirkungen, 10. Auflage

Wichtige Inhibitoren von CYP- Enzymen (Auswahl)

Diese Arzneimittel hemmen folgende Isoenzyme

1A2	2C9	2C19	2D6	3A4,5,7
Ciprofloxacin	Amiodaron	Fluoxetin	Bupropion	Grapefruitsaft
Fluvoxamin	Fluconazol	Fluvoxamin	Duloxetin	Clarithromycin
Cimetidin	Isoniazid	Lansoprazol	Fluoxetin	Erythromycin
Norfloxacin	Phenylbutazon	Omeprazol	Paroxetin	
Nicht: Levofloxacin		Indomethacin	Amiodaron	Diltiazem
		Oxcarbazepin	Cimetidin	Verapamil
			Doxepin	
rot:			Haloperidol	Fluconazol
starke Inhibitoren		ren	Methadon	Itrconazol
			Ritonavir	
			Celecoxib	Indinavir
			Citalopram	Nelfinavir
a ala . N	delugação 10 Auflaga		Escitalopram	Ritonavir
ach: Mutschler Arzneimittelw	virkungen, To. Autlage			

Wichtige Induktoren von CYP- Enzymen (Auswahl)

1A2

Broccoli

Rosenkohl

Tabak!

Omeprazol

2C9

Rifampicin

2C19

Carbamazepin

Prednison

Rifampicin

2D6

Dexamethason

Rifampicin

3A4,5,7

Efavirenz

Nevirapin

Carbamazepin

Oxcarbazepin

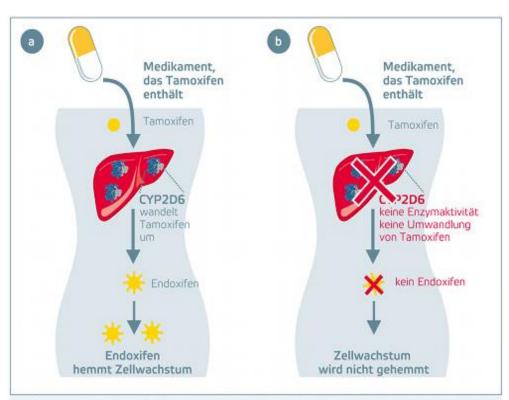
Barbiturate

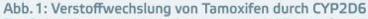
Glucocorticoide

Rifampicin

Johanniskraut

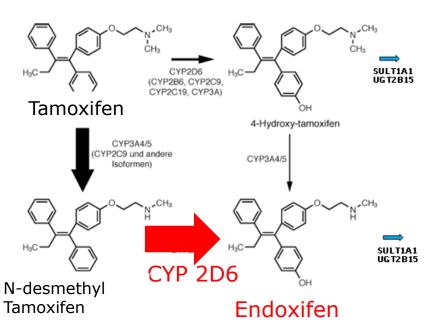
Phenytoin


Troglitazon


Interaktionsbeispiel Patientin nach Mamma-Ca, Ö-r +, 46 Jahre

- Anamnese: leichte Rückenschmerzen, jetzt zunehmend Nervenschmerzen und Zeichen einer mittelgradigen depressiven Episode
- Onkologische Nachsorge sonst unauffällig
- Derzeitige Therapie: **Tamoxifen**
- Wegen der Rückenschmerzen erhält die Patientin: Celecoxib 200 mg/d
- Wegen der Depression und der Nervenschmerzen Duloxetin 90 mg/d

Wo ist das Problem?


Problem 1: Tamoxifen ist ein Prodrug

Zur Behandlung von Mammkarzinomen wird Tamoxifen eingesetzt.

- a Das Enzym CYP2D6 wandelt den Wirkstoff Tamoxifen in Endoxifen um. Endoxifen hemmt dann das Zellwachstum von Mammakarzinomen.
- b Besitzt CYP2D6 durch eine Variante im CYP2D6-Gen keine Enzymaktivität wird Tamoxifen nicht in Endoxifen umgewandelt. Somit wird auch das Zellwachstum von Mammakarzinomen nicht gehemmt.

Problem 2: Celecoxib und Duloxetin sind CYP-2D6 Hemmer – damit keine Tamoxifenwirkung

Diese Arzneimittel hemmen folgende Isoenzyme

Klug entscheiden: No-Gos bei Medikamentenkombis Dtsch Arztebl 2021; 118(12): S. 530-532

Negativempfehlungen (DGIM, Deutsche Gesellschaft für Innere Medizin)

- 1. Eine Kombinationstherapie von **Citalopram/Escitalopram und Makroliden** soll nicht durchgeführt werden: Dosisabhängige Verlängerung des QTc-Intervalls, Gefahr von ventrikulären Tachykardien, Torsadede-pointes-Tachykardien und plötzlichem Herztod.
- 2. ACE-Hemmer und Sartane sollen nicht miteinander oder mit Renin-Inhibitoren kombiniert werden.
- 3. Unter einer Kombinationstherapie von **Diuretika und RAS-Blockern sollen NSAR** wegen des erhöhten Risikos für ein ANV nicht eingesetzt werden. Besonders riskant ist die Dreifachkombination von RAS-blockierenden Arzneimitteln, NSAR und Diuretika (engl. "triple whammy"). Hierunter verdoppelt sich das absolute Risiko für das Auftreten eines akuten Nierenversagens gegenüber der Zweifachkombination nochmals (NNH 1: 158).
- 4. Bestimmte **Opioide (Oxycodon, Fentanyl, Tramadol)** sollen nicht mit **Clarithromycin** und anderen Hemmern von Cytochrom 3A4 kombiniert werden. Starke Inhibitoren dieses Isoenzyms können die Opioidblutspiegel klinisch relevant erhöhen bis hin zu bedrohlichen Intoxikationen mit schwerer Atemdepression, Delir und Myokloni.
- 5. Rifampicin interagiert mit vielen Medikamenten. Es soll vor allem nicht gleichzeitig mit NOAKs verabreicht werden.
- 6. Die Kombination aus **NSAR** und systemisch wirksamen **Glukokortikoiden** soll **nicht ohne PPI-Schutz** erfolgen.

Tab. 1 Exemplarisch ausgewählte webbasierte EDV-Programme zur Prüfung möglicher Arzneimittelinteraktionen (Stand: Februar 2020)

Internetadresse Besonderheiten

<u>www.drugs.com/drug_interactions.php</u> online, kostenfrei

https://reference.medscape.com/drug-online, kostenfrei

<u>interactionchecker</u>

https://crediblemeds.org Fokus auf QT-Zeit

www.ifap.de/app-arznei-aktuell/ App, Interaktionscheck-Tool kostenpflichtig

Übersicht CYP-450-Substrate

<u>www.epocrates.com</u> App, Grundversion kostenfrei

http://medicine.iupui.edu/clinpharm/ddis/clinical-

table

<u>www.kik-service.de</u> kostenpflichtig

<u>www.stabilis.org</u> kostenfrei, umfangreich

www.drugbank.ca kostenfrei

Selpien H. et al.: Perioperative Arzneimittelreaktionen-was der Anästhesist wissen sollte. Anästhesiol Intensivmed Notfallmed Schmerzther 2020;55:289-299